

© A+ Computer Science - www.apluscompsci.com

Visit us at
www.apluscompsci.com

Full Curriculum Solutions

M/C Review Question Banks

Live Programming Problems

Tons of great content!

www.facebook.com/APlusComputerScience

http://www.apluscompsci.com/
https://www.facebook.com/APlusComputerScience

© A+ Computer Science - www.apluscompsci.com

-Read all 4 questions before writing anything

 -answer the easiest question 1st

 -most times question 1 is the easiest

 -see if part B calls part A and so on

 -many times part C consists of A and B calls

 -write something on every question

 -write legibly / use PENCIL!!!!!!!!!!

 -keep track of your time

© A+ Computer Science - www.apluscompsci.com

-When writing methods

 -use parameter types and names as provided

 -do not redefine the parameters listed

 -do not redefine the methods provided

 -return from all return methods

 -return correct data type from return methods

© A+ Computer Science - www.apluscompsci.com

-When writing a class or methods for a class

 -know which methods you have

 -know which instance variables you have

 -check for public/private on methods/variables

 -return from all return methods

 -return correct data type from return methods

© A+ Computer Science - www.apluscompsci.com

-When extending a class

 -know which methods the parent contains

 -have the original class where you can see it

 -make sure you have super calls

 -check for public/private on methods/variables

 -make super calls in sub class methods as needed

© A+ Computer Science - www.apluscompsci.com

-When extending abstract / implementing interface

 -know which methods the parent contains

 -have the original class where you can see it

 -make sure you have super calls

 -check for public/private on methods/variables

 -make super calls in sub class methods as needed

 -implement all abstract methods in sub class

© A+ Computer Science - www.apluscompsci.com

ArrayList of References / Strings
 – get,set,remove,add,size – levels of abstraction

GridWorld or Make a Class
– location, actor, bug, critter, ROCK, grid, super, abstract

Matrix / 2 D Array
 – nested loops, GridWorld (grid)

Make a Class / Interfaces / Abstract
 – implement / extend – not seen this ? type in a few years

© A+ Computer Science - www.apluscompsci.com

A typical ArrayList question involves
putting something into an ArrayList
and removing something from an
ArrayList.

© A+ Computer Science - www.apluscompsci.com

Arraylist is a class that houses an
array.

An ArrayList can store any type.

All ArrayLists store the first reference
at spot / index position 0.

© A+ Computer Science - www.apluscompsci.com

0 1 2 3 4 5 6 7 8 9

nums

0 0 0 0 0 0 0 0 0 0

int[] nums = new int[10]; //Java int array

An array is a group of items all of the
same type which are accessed through
a single identifier.

© A+ Computer Science - www.apluscompsci.com

ArrayList
frequently used methods

Name Use

add(item) adds item to the end of the list

add(spot,item) adds item at spot – shifts items up->

set(spot,item) put item at spot z[spot]=item

get(spot) returns the item at spot return z[spot]

size() returns the # of items in the list

remove() removes an item from the list

clear() removes all items from the list

import java.util.ArrayList;

© A+ Computer Science - www.apluscompsci.com

List<String> ray;
ray = new ArrayList<String>();
ray.add("hello");
ray.add("whoot");
ray.add("contests");
out.println(ray.get(0).charAt(0));
out.println(ray.get(2).charAt(0));

ray stores String references.

OUTPUT

h
c

© A+ Computer Science - www.apluscompsci.com

int spot=list.size()-1;
while(spot>=0)
{

 if(list.get(spot).equals("killIt"))
 list.remove(spot);

 spot--;

}

© A+ Computer Science - www.apluscompsci.com

for(int spot=list.size()-1; i>=0; i--)
{

 if(list.get(spot).equals("killIt"))
 list.remove(spot);

}

© A+ Computer Science - www.apluscompsci.com

int spot=0;
while(spot<list.size())
{

 if(list.get(spot).equals("killIt"))
 list.remove(spot);
 else
 spot++;

}

© A+ Computer Science - www.apluscompsci.com

public String scrambleWord(String word)
{
 String ret = "";
 for(int i = 0; i < word.length(); i++)
 {
 if(i+1 != word.length()
 && word.substring(i,i+1).equals("A")
 && !word.substring(i+1,i+2).equals("A"))
 {
 ret += word.substring(i+1,i+2) + word.substring(i,i+1);
 i++; //prevents hitting the same “A” again
 }
 else
 {
 ret += word.substring(i,i+1);
 }
 }
 return ret;

}
You must know String!

© A+ Computer Science - www.apluscompsci.com

public void scrambleOrRemove(List<String> wordList)
{
 for(int i = wordList.size()-1; i >= 0; i--)
 {
 String cur = wordList.get(i);
 String ret = scrambleWord(cur);
 if(ret.equals(cur))
 wordList.remove(i);
 else
 wordList.set(i , ret);
 }
} You must know ArrayList!

© A+ Computer Science - www.apluscompsci.com

Visit us at
www.apluscompsci.com

Full Curriculum Solutions

M/C Review Question Banks

Live Programming Problems

Tons of great content!

www.facebook.com/APlusComputerScience

http://www.apluscompsci.com/
https://www.facebook.com/APlusComputerScience

© A+ Computer Science - www.apluscompsci.com

One question on the A test free
response will require you to manipulate
a 2-dimensional array or a GridWorld
grid.

© A+ Computer Science - www.apluscompsci.com

0 1 2

0 0 0

int[][] mat = new int[3][3];

A matrix is an array of arrays.

0 0 0

0 0 0

0

1

2

© A+ Computer Science - www.apluscompsci.com

0 2 0

int[][] mat = new int[3][3];
mat[0][1]=2;

A matrix is an array of arrays.

0 0 0

0 0 0

0

1

2

Which
array?

Which
spot?

0 1 2

© A+ Computer Science - www.apluscompsci.com

0 0 0 5 0

0 0 0 0 0

0 0 7 0 0

0 0 0 0 0

0 3 0 0 0

mat[2][2]=7;

mat[0][3]=5;

mat[4][1]=3

0 1 2 3 4

0

1

2

3

4

© A+ Computer Science - www.apluscompsci.com

for(int r = 0; r < mat.length; r++)
{
 for(int c = 0; c < mat[r].length; c++)
 {
 mat[r][c] = r*c;
 }
}

0 0 0

0 1 2

0 2 4
if mat was 3x3

© A+ Computer Science - www.apluscompsci.com

0 1 2

0 0 0

int[][] mat = new int[3][3];

A matrix is an array of arrays.

0 0 0

0 0 0

0

1

2

of
array
s

size
of
each
array

© A+ Computer Science - www.apluscompsci.com

int[][] mat = {{5,7},{5,3,4,6},{0,8,9}};

for(int[] row : mat)
{
 for(int num : row)
 {
 System.out.print(num + " ");
 }
 System.out.println();
}

OUTPUT
5 7
5 3 4 6
0 8 9

© A+ Computer Science - www.apluscompsci.com

public SeatingChart(List<Student> studentList, int rows, int cols)
{
 seats = new Student[rows] [cols];
 int i = 0;
 for(int c = 0; c < seats[0].length; c++)
 {
 for(int r = 0; r < seats.length; r++)
 {
 if(i < studentList.size())
 seats[r][c] = studentList.get(i++);
 }
 }
}

This could be optimized, but it
works perfectly and I assume
many students are going to
write something close to this.

© A+ Computer Science - www.apluscompsci.com

public SeatingChart(List<Student> studentList, int rows, int cols)
{
 seats = new Student[rows] [cols];
 int i = 0;
 boolean stop = false;
 for(int c = 0; c < seats[0].length && !stop; c++)
 {
 for(int r = 0; r < seats.length; r++)
 {
 if(i < studentList.size())
 seats[r][c] = studentList.get(i++);
 else //added this in to make it more efficient
 { //not required for AP CS A, but its fun to discuss
 stop = !stop;
 break;
 }
 }
 }
}

Here is the optimized version
of ver 1. This not required, but
has some fun stuff to discuss.

© A+ Computer Science - www.apluscompsci.com

public SeatingChart(List<Student> studentList, int rows, int cols)
{
 seats = new Student[rows] [cols];

 for(int i = 0; i < studentList.size(); i++)
 {
 //this algorithmic approach is common on lots
 //of matrix programming contest problems
 seats[i % rows][i / rows] = studentList.get(i);
 }
}

This algorithm is really cool, but not one
that most students would come up with
on the exam. I teach this approach to
my contest teams as there are often
problems that involve storing strings in
matrices at many contests.

© A+ Computer Science - www.apluscompsci.com

public int removeAbsentStudents(int allowedAbsences)
{
 int count = 0; //I stuck with column / row cuz I felt like it
 for(int c = 0; c < seats[0].length; c++)
 {
 for(int r = 0; r < seats.length; r++)
 { //must check for null just like the Horse[] question from 2012

 if(seats[r][c] != null &&
 seats[r][c].getAbsentCount()>allowedAbsences)
 {
 seats[r][c] = null;
 count ++;
 }
 }
 }
 return count;
}

© A+ Computer Science - www.apluscompsci.com

Visit us at
www.apluscompsci.com

Full Curriculum Solutions

M/C Review Question Banks

Live Programming Problems

Tons of great content!

www.facebook.com/APlusComputerScience

http://www.apluscompsci.com/
https://www.facebook.com/APlusComputerScience

© A+ Computer Science - www.apluscompsci.com

A typical Abstract/Interface question
requires that a class be written that
extends the abstract class or
implements the interface and that all
abstract method(s) be implemented.

© A+ Computer Science - www.apluscompsci.com

Abstract classes are used to

define a class that will be

used only to build new

classes.

No objects will ever be

instantiated from an abstract

class.

© A+ Computer Science - www.apluscompsci.com

Mammal (abstract class)

Human Whale Cow

© A+ Computer Science - www.apluscompsci.com

Any sub class that extends a

super abstract class must

implement all methods defined

as abstract in the super class.

© A+ Computer Science - www.apluscompsci.com

public abstract class APlus
{
 public APlus(int x)
 //constructor code not shown

 public abstract double goForIt();

 //other fields/methods not shown
}

Pet
Item

© A+ Computer Science - www.apluscompsci.com

public class PassAPTest extends APlus
{
 public PassAPTest(int x)
 {
 super(x);
 }

 public double goForIt()
 {
 double run=0.0;
 //write some code - run = x*y/z
 return run;
 }

 //other fields/methods not shown
}

public abstract class APlus
{
 public APlus(int x)
 //constructor code not shown

 public abstract double goForIt();

 //other fields/methods not shown
}

© A+ Computer Science - www.apluscompsci.com

public interface Exampleable
{
 int writeIt(Object o);
 int x = 123;
}

Methods are public abstract!
Variables are public static final!

© A+ Computer Science - www.apluscompsci.com

public interface Exampleable
{
 public abstract int writeIt(Object o);
 public static final int x = 123;
}

Methods are public abstract!
Variables are public static final!

© A+ Computer Science - www.apluscompsci.com

An interface is a list of abstract
methods that must be implemented.

An interface may not contain any
implemented methods.

Interfaces cannot have constructors!!!

© A+ Computer Science - www.apluscompsci.com

Interfaces are typically used when
you know what you want an Object
to do, but do not know how it will
be done.

If only the behavior is known, use
an interface.

© A+ Computer Science - www.apluscompsci.com

Abstract classes are typically used
when you know what you want
an Object to do and have a bit of an
idea how it will be done.

If the behavior is known and some
properties are known, use an abstract
class.

© A+ Computer Science - www.apluscompsci.com

public class Trio implements MenuItem
{
 private MenuItem one, two, three; //I used MenuItem because that’s how I roll!

 public Trio(Sandwich f, Salad s, Drink t) //Boo – constructor should take 3 MenuItems
 {
 one = f;
 two = s;
 three = t;
 }

 public String getName()
 {
 return one + "/" + two + "/" + three;
 }

 public double getPrice()
 {
 return Math.max(one.getPrice() + two.getPrice() ,
 Math.max(one.getPrice() + three.getPrice(), two.getPrice() + three.getPrice()));
 }

 public String toString()
 {
 return getName() + " " + getPrice();
 }
}

© A+ Computer Science - www.apluscompsci.com

Visit us at
www.apluscompsci.com

Full Curriculum Solutions

M/C Review Question Banks

Live Programming Problems

Tons of great content!

www.facebook.com/APlusComputerScience

http://www.apluscompsci.com/
https://www.facebook.com/APlusComputerScience

© A+ Computer Science - www.apluscompsci.com

-Read all 4 questions before writing anything

 -answer the easiest question 1st

 -most times question 1 is the easiest

 -see if part B calls part A and so on

 -many times part C consists of A and B calls

 -write something on every question

 -write legibly / use PENCIL!!!!!!!!!!

 -keep track of your time

© A+ Computer Science - www.apluscompsci.com

-When writing methods

 -use parameter types and names as provided

 -do not redefine the parameters listed

 -do not redefine the methods provided

 -return from all return methods

 -return correct data type from return methods

© A+ Computer Science - www.apluscompsci.com

-When writing a class or methods for a class

 -know which methods you have

 -know which instance variables you have

 -check for public/private on methods/variables

 -return from all return methods

 -return correct data type from return methods

© A+ Computer Science - www.apluscompsci.com

-When extending a class

 -know which methods the parent contains

 -have the original class where you can see it

 -make sure you have super calls

 -check for public/private on methods/variables

 -make super calls in sub class methods as needed

© A+ Computer Science - www.apluscompsci.com

-When extending abstract / implementing interface

 -know which methods the parent contains

 -have the original class where you can see it

 -make sure you have super calls

 -check for public/private on methods/variables

 -make super calls in sub class methods as needed

 -implement all abstract methods in sub class

© A+ Computer Science - www.apluscompsci.com

ArrayList of References / Strings
 – get,set,remove,add,size – levels of abstraction

GridWorld or Make a Class
– location, actor, bug, critter, ROCK, grid, super, abstract

Matrix / 2 D Array
 – nested loops, GridWorld (grid)

Make a Class / Interfaces / Abstract
 – implement / extend – not seen this ? type in a few years

